JSFiddle

Gabriele's public fiddles

  • PHUUa

    jQuery 1.4.4, HTML, CSS, JavaScript

  • nLRB9

    jQuery 1.4.4, HTML, CSS, JavaScript

  • YzPeH

    jQuery 1.4.4, HTML, CSS, JavaScript

  • hsv97

    jQuery 1.4.4, HTML, CSS, JavaScript

  • 3trV2

    No-Library (pure JS), HTML, CSS, JavaScript

  • G6NP5

    No-Library (pure JS), HTML, CSS, JavaScript

  • B8FdQ

    No-Library (pure JS), HTML, CSS, JavaScript

  • UXNs2

    No-Library (pure JS), HTML, CSS, JavaScript

  • 3Lu4h

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • s8XZQ

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • cdFUU

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • mgDqx

    jQuery 3.3.1, HTML, CSS, JavaScript

  • rfGv8

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • 2ZXhJ

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • zWhNL

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • DuQGk

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • Wqr8X

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • 7br93

    Mootools 1.3 (compat), HTML, CSS, JavaScript

  • Problem 12

    he sequence of triangle numbers is generated by adding the natural numbers. So the 7^(th) triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors?

  • Problem 11

    In the 20×20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is 26 × 63 × 78 × 14 = 1788696. What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 20×20 grid?