Edit in JSFiddle

const webcamElement = document.getElementById('webcam');
const classifier = knnClassifier.create();

let net;

async function app() {
  console.log('Loading mobilenet..');

  // Load the model.
  net = await mobilenet.load();
  console.log('Successfully loaded model');

  // Create an object from Tensorflow.js data API which could capture image
  // from the web camera as Tensor.
  const webcam = await tf.data.webcam(webcamElement);

  // Reads an image from the webcam and associates it with a specific class
  // index.
  const addExample = async classId => {

    for (let x = 50; x > 0; x--) {
      // Capture an image from the web camera.
      const img = await webcam.capture();

      // Get the intermediate activation of MobileNet 'conv_preds' and pass that
      // to the KNN classifier.
      const activation = net.infer(img, 'conv_preds');

      // Pass the intermediate activation to the classifier.
      classifier.addExample(activation, classId);

      // Dispose the tensor to release the memory.

      // Add some time between images so there is more variance
      setTimeout(() => {
        console.log("Added image")
      }, 100)

  // When clicking a button, add an example for that class.
  document.getElementById('class-a').addEventListener('click', () => addExample(0));
  document.getElementById('class-b').addEventListener('click', () => addExample(1));

  while (true) {
    if (classifier.getNumClasses() > 0) {
      const img = await webcam.capture();

      // Get the activation from mobilenet from the webcam.
      const activation = net.infer(img, 'conv_preds');
      // Get the most likely class and confidence from the classifier module.
      const result = await classifier.predictClass(activation);

      const classes = ['notouch', 'touch'];
      document.getElementById('console').innerText = `
        prediction: ${classes[result.label]}\n
        probability: ${result.confidences[result.label]}

      // Dispose the tensor to release the memory.

    await tf.nextFrame();

    <!-- Load the latest version of TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/mobilenet"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/knn-classifier"></script>

    <div id="console">Remember to allow your camera first</div>
    <!-- Add an image that we will use to test -->
    <video autoplay playsinline muted id="webcam" width="224" height="224"></video>
    <button id="class-a">No touch</button>
    <button id="class-b">Touch Face</button>
    <span id="message"></span>
    <!-- Load index.js after the content of the page -->
    <script src="index.js"></script>